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ABSTRACT

The fundamental control synthesis issue of establishing a priori convergence rates
of approximation schemes for feedback controllers for a class of distributed parameter
systems is addressed within the context of hereditary systems. Specifically, a
factorization approach is presented for deriving approximations to the optimal feedback
gains for the linear regulator-quadratic cost problem associated with time-varying
functional differential equations with control delays. The approach is based on a
discretization of the state pemnalty which leads to a simple structure for the feedback
control law. General properties of the Volterra factors of Hilbert-Schmidt operators
are then used to obtain convergence results for the controls, trajectories and feedback
kernels. Two algorithms are derived from the basic approximation scheme, including a

fast algorithm, in the time-invariant case. A numerical example is also considered.
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1. INTRODUCTION. This report represents a first application of the control synthesis
technique based on factorization methods developed in [24]. The main significance of
the results contained herein stems from our ability to obtain a detailed analysis of a
priori convergence rates for numerical approximation of feedback controllers for a
class of distributed parameter systems. Although in the past 15 years much work has
been done in developing approximation schemes for various distributed controllers, the
important issue of convergence rates has been largely neglected. This is due primarily
to the fact that it is a difficult problem, and control researchers have been content
with the first order assessment regarding whether or not their approximation scheme
converges at all (in certain correct senses). In this report convergence rates are
established in the context of a challenging class of problems that include control delay
terms. The underlying methods are of particular importance since they more tightly
connect the modeling and control synthesis problems, and hence, have application to

other distributed parameter systems.

The particular problem we address is the computation of the optimal feedback
gain for the finite time linear regulator quadratic cost problem for systems governed by
retarded functional differential equations (RFDE) with control delays. Feedback
control laws for these systems have been previously derived for both the finite and
infinite time problems in several articles under various hypotheses (see for example [6],
[13], [14], [17], [24], [25])). A common approach in several of these articles is to relate
the REDE with control delays to an evolution equation in an appropriate state space.
The feedback control law then arises in the familiar form as a solution to an operator
Riccati equation. However, when point delays appear in the control, an unbounded
input operator results and this operator then appears in the quadratic term of the
Riccati equation. The presence of this unbounded term would appear to complicate any

analysis of approximation schemes for the feedback gains.

The approach in [24] utilizing factorization theory [11], [22]), allows us to
circumvent these difficulties. The interest here is to further pursue the approach of
{24] to the problem of approximating the optimal feedback kernel and deriving
convergence estimates for the approximations, and the resulting controls and
trajectories. (We note some other applications of factorization include for example,
filtering and smoothing of nonstationary processes over a finite interval [15], [16],
inverse problems in the spectral theory of differential operators [8], [18], solutions to

two point boundary value problems [21], and solutions to Fredholm equations of the first



and second kinds, [11].) Although this specific problem has not to this author's
knowledge been treated in the literature, several articles (e.g., [6], [10], [19]) have

considered the approximation problem without control delays.

The approach in each of these articles involves expressing the RFDE as an
evolution equation in the state space RNxLz, and then approximating the resulting
dynamical system. Delfour [5] discretizes in both the spatial and time variables, while
Kunisch [19] and Gibson [10] discretize in only the spatial variable. Delfour considers
the time-varying problem and obtains weak convergence of the solutions to the
approximating Riccati equations. In [10] and [19] the open-loop semigroup is first
approximated by discretizing the history space, and then the approximation theory of
[9] is used for subsequent convergence analysis. This analysis is based on exploiting the
relationship developed in [9] between the open-loop semigroup and the Riccati equation
defining the feedback law. Open loop semigroup approximations have been derived in
[2), [3). By careful comsiderations involving the adjoint semigroup together with
properties deduced from the finite dimensionality of the control space, Gibson was able
to demonstrate strong convergence of the approximating Riccati operators. When
coupled with the finite dimensionality of the input space, this leads to uniform
convergence of the feedback operators. This is a significant result with respect to
control implementation, since with uniform convergence the optimality of the

approximating feedback law is independent of the state.

The convergence analysis presented in [10] and [19] depends heavily on the fact
that the control map has finite rank. This condition does >t hold in the control delay
problem and straightforward extensions of these convergence results to the control
delay case are not apparent. However, the form of the feedback kernel derived in [24]
remains amenable to approximation and convergence analysis regardless of the presence
of control delays. The reason for this is that control delays do not present any
complications in the open loop formulation of the optimal control law and that the
relationship between open loop and closed loop is somewhat transparent in the approach
of [24] - the feedback kernel is derived from linear operators involving the fundamental
matrix of the REDE and the solution to a certain factorization problem associated with
the fundamental matrix. Convergence questions for approximations to the feedback

gain then reduce to corresponding questions regarding convergence of solutions to




related factorization problems. (We note that the integral Riccati equations of [9] are
also equivalent to certain factorization problems [23], so that the convergence analysis

in [10] and [19] can also be performed within a factorization context.)

It will be shown that if the cost on the state in the regulator problem is a discrete
sum with no integral term, then the associated factorization problem is solved by
matrix inversion, and the exact feedback kernel can be defined in terms of the
fundamental matrix solution, quadrature, and the solutions to finite dimensional linear
equations. (This form of the solution generalizes a result of Manitius [20] for the
problemn with terminal state penalty and no control delays.) Thus an approximation
scheme for the problem containing an integral state penalty term can be developed by
approximating this term by quadrature and solving exactly for the feedback kernel of
the resulting discretized state cost problem. Using this approach together with
factorization arguments we will be able to establish 0(1/n) L“ - convergence for the

approximate feedback kernels in the time-varying control delay case.

This result is (analytically) somewhat sharper than Gibson's in that the Lw
convergence of the kernels applies on the square as well as the diagonal, and also that
a priori rates can be provided. The principal reason this sharper result can be obtained
is that we exploit the fact that only a computable piece of the semigroup - that part
contributed by the fundamental matrix solution - is required to define the feedback
kernel. Thus it is never necessary to consider the more difficult problem of
approximating the entire semigroup. We now briefly outline the organization of the

report.

In Section 2 the necessary mathematical preliminaries are developed and
discussed. Because the approach does not follow along a Riccati synthesis of the
solution, we will recapitulate in this section portions of the discussion in [24] relevant
to the present application - particularly certain aspects of the Volterra factorization
and how they apply to the RFDE control problem.

Section 3 contains the L“ - convergenc2 results for the feedback kemels, controls,
and trajectories. Instead of considering specific quadrature schemes approximating the
state cost, all the results are proved with respect to a sequence of Borel measures
satisfying certain convergence hypotheses. The key tool of this section is a



factorization lemma which asserts that the factorization éroblem is well-posed (in an

appropriate sense) in the space of integral operators with essentially bounded kernels.

In Section 4, the explicit form of the optimal feedback kernel associated with
discrete state cost is derived. The resulting approximation scheme developed from the
cost discretizations is then used as an analytical tool to obtain further results regarding
the feedback Xernel. PBor example, using essentially matrix manipulations, a
Wiener-Hopf integral equation for the optimal feedback kernel is derived which is
shown to be the control delay generalization of the Wiener-Hopf equation Manitius [20)

had previously derived for the feedback kernel via a maximum principle.

In Section § two algorithms representing implementation. of the basic
approximation scheme of Section 4 are derived. In the time-invariant case a fast
algorithm is derived by exploiting the near Toeplitz structure of the system of
equations that defines the feedback kernel. A simple numerical example is also

presented.

2. PRELIMINARIES, Let [-r, T] denote a closed and bounded interval in the
real line with r l O and T > 0, and letz:denote the class of Borel subsets of
[-r, T). For an arbitrary Banach space Y, |yl will denote the norm of an
element y ¢ Y, B(Y, Z) will denote the space of bounded linear maps from Y
into another Banach space Z, and for brevity we write B(Y) for B(Y,Y).
Subscripts will sometimes be attached to the norm of an element to remove any
ambiguities that might arise due to the fact that several different topologies
will be used in the report. The notation A® (respectively A’) will be used to

denote the adjoint (transpose) of an operator (matrix).

In the sequel the Banach space of continuous functions C([-r, T1, RN)
will be denoted X, the Hilbert space Ly ([-z, TI, RY) will be denmoted U, and H
will denote the Hilbert space Lo([-2,T], RN). Now define the resolution of
the identity E: Z—-’ B(U) by multiplication by the characteristic function,
i.e. [E(0)ul(t) = X(w)(t)u(t) (X(w)(t) = 0 if t ¢ @, X(w)(t)=1 if t ¢ @), and
let Pt denote the family of projections E([-r, t]l). The complementary family,




I - Pt, will be denoted Pt' Note that Pt is strongly continuous,

j.e. t —> Pty is continuous for each uv e U.

In this section we shall review some .of the results in [24] pertaining to

the linear regulator problem with dynamics

o

x(t) 'f"e n(t,8) x(t +8) + (BPju)(t) t 20 (2.1)
-T
x(t) = é(t) t e [-1,0],

and quadratic cost functional,

T
J(u,x) = f <x(s), Q(s) x(s)> du(s) + f luts)|2ds. (2.2)
-r =r

In (2.1), we assume that §(t) is continuouns, x(*) ¢ X, uel, BeB(U,H) and
P, is the projection E([0, T]). (It would not affect subsequent convergence
analysis of the feedback kernels to allow an arbitrary projection Pto' t, & [~
r, T], in place of Poe The choice ty = 0 reflects the prodblem formulationm in
which control policies cannot be implemented until time t = 0.) The only
constraint we impose on B at this time is that it be causal, i.e., for each
te[-r,T], if vy = uy a.e. on [0,t] then (Buy)(s) = (Buy)(s) for a.c. s i t.
The matrix valued functionn is assumed measurable on RxR and is
normalized so that n(t,8) = 0 for O _)_ 0 and 1¢(t,8) = n(t,-r) for 6 i -
r. It is further assumed that n(t,*) is 1eft continuous for each t and there

exists a fonction m ¢ Ly(0,T) such that

IVar n(t, )| £ m(t) (2.3)
vhere |°| denotes any matrix norm., Inthe cost (2.2), p denotes an arbitrary
positive regular Borel measure on [-r,T], and Q(*) is Borel ‘measurable with

Q(s) ?_ Op- sa.e. sand is p- essentially bounded.



It is convenient at this time to introdnce some operators associated with

‘the optimization problem (2.1) = (2.2). Ve define:

. 0 te[-r,0]

0
LeB(X); Lx:t — /fdg n(s,8) x(s + 8)ds t 20, (2.4)
0 -r
t
FeB(U,X); Fu:t — /F(t.s) u(s)ds, (2.5)
-r
and the adjoint—-like F¥,
T
FeB(X,0); Fx:t — [ F'(s,t)Qs) x(s) duls), (2.6)
t

where F(t,s) = [POB‘Y'(t.‘)]'(s) and Y(t,s) is the fundamental matrix solutiom

of the homogeneous problem (see [12]). 7Y(*,*) satisfies the Volterra equation

t
I —/ Y(t,o)n(o,s ~ o)do s $t 2.7
Y(t,s) = s
(1) s >t,

and the solution to '(2.1) can be realized as

0 t
x(t) = Y(¢,0) & (0) +/dBfY(t.c)n(c. B-c)do ¢6(B) (2.8)
-r 0

t

+/Y(t.a) (BPu) (o) da.
0




Also, sup Iv(t,s)! ¢ =, Y(t,s) is absolutely continmous for t i s for
each s, and Y(t,*) is of bounded variation for each t. We note from the
definition of F(t,s) that F(t,s) =0 for s ¢ 0. Hence, FP = F and pop#='p{f

Using s completing the squares argument, the open loop control law for

(21) - (2.2) can be easily derived in terms of the operators defimed above,
Theorem 2.1. The optimal control 3 for the regulator problem (2.1) -~ (2.2) is
a = Né
where MeB(X,U), 6 ¢ X,
M= —(1 + FiF)-1p#(1 - 1)1,
é(0) t2 0
é(t) =
é(t) tel-r,0].
Proof [24].

In [24] the feedback control law for (2.1) -~ (2.2) was derived from the
open loop control above using a factorization approach. In an effort to
motivate this approach and make the report somewhat more self-contained, we
will briefly retrace some of the steps in [24] leading to the feedback law,

To sketch how the factorization ideas arise in the feedback control
synthesis, we will consider for convenience the case p = Lebesgune measure,
Q(*) = I, U=H, and B= the identity operator. Using (2.,7) we can then write

(2.1) - (2.2) as

min <{x,x> + <u,n) (2.9)



subject to -
x=f+Tu . . (2.10)

where <°,*> is the inmer product on U (we can also take X = U in this

formulation), T & B(U) is the Hilbert-Schmidt operator
t
Ta: t -—>fY(t.s)n(s)ds.

[+

and f is the forcing term in (2-8) resulting from the initial condition ¢,

) t
£(t) = Y(t,0)+d (0) /dﬁfY(t.o) n (o, B-ol)do é (B).
<r o

Standard arguments then give the optimal control solution T as
3= —(I+ T 1%,

If we now consider (2.9) - (2.10) with the modification thatue?PJ,

t 10. and replace f by an arbitrary forcing term £, the solution to this
modified problem is realized as

at = -(I + PtT.TBt)-lPtT‘ft-
"Using a principle of optimality (see [24]) it can be shown that the choice
fo = Pt[TPtG + f] in the modified problem leads to %t = PtlAl for each t. Thus,
given a partition of [-x,T), ~r =t , C ¢ty ¢ **t =T, it follows that

A . -1 .

©; = [t;, tj43]. Next, examining the term Pti'l‘.fti, it is evident that its
values are determined by Pti fti. And for s 3 ty




: s
ft{‘) = Y(s,0) ¢ (0) +/dﬁ }/Y(:.a) n (a,p—a)dal ¢ (B)

-r (]
t
+fx(s.a)£(a).

o

But the above is recognized as the solution to

Q
x(s) = fda n(s,08)x(s + 9), s 2t
-
x(s) = x(s) t-r {8 S,

where Q(s) is the optimal trajectory. The variation of constants formula then

implies for s 2 t,,

dg f Y(s,a) q (a,p-a)da}x(B).
ti b 4 ti

ty
A

fti (s) = Y(l.ti)!(ti) +
Thus the optimal comtrol ia (2.11) at time t ¢ [t;,t;,4] only uses the
A "
state information x(s), s ¢ [ti-t.til. This control law is sow "open-1loop
just on each subinterval [tj, ti+1]' The 1imit as the mesh of the partitions
in (2.11) tends to zero would hopefully produce the feedback soluntion. This is
indeed the case (cf [24]), and although we will not go into all of the

specifics regarding the limiting procedure, we will briefly discuss the very
much related notion of the projection integral ([11]).

Using the same notations as before, let G: [-r,T] — B(U). Assume that
G is strongly continuous, i.e. t —> G(t)u is continumous for each u s U. Now
let K ¢ B(U) be a Hilbert~Schmidt operator and consider Riemann sums of the
fom



ZE(wi)KG(t;_), “r=t, (=T,
w; = [t;,t;41]1, and t;_ ¢ v;. These sums can be shown to converge in the

operator morm as the mesh of the partitions tends to zero [11]. This limit

is ropresegted by _the projection integral
deKG(t). (2.12)
and it can further be shown [11] that
! /dEXG(t)'ns £ Ixlgg sup lG(0) 1. (2.13)
Here |:|gg denotes the Hilbert-Schmidt norm.
Two important projection integrals on the space X of Hilbert—-Schmidt

maps in B(U) are obtained from the selections G,(t) = Pt and G (t) = Py in
(2.12). The resulting mappings P,»

p, () = dexGi(t)

are bounded projections on A, If K & R(pt) we say that X is causal
(anticausal). The elements of R(p ) are quasinilpotents. In the sequel we
shall also write K, for pi(l). N;te also that Pty and P.U are invariant
subspaces of p;(l). respectively.

We note that in the space U a Hilbert-Schmidt map K is necessarily an
integral operator with kermel, say K(t,s). In this case p, ) are simply the

Volterra operators

t
p+(K)u: t — f!(t.s)n(:)ds.
' -r
T
p_(!)n: t —»/l(t,s)u(s)ds.
t

10




With this bit of background we can now state the basic factorization

results that will be used in the sequel,

Theorem 2.2. (Gobberg—Krein). Let K ¢ X, Then there exist unique
operators X, ¢ R(Pt) such that

I+K=(I+X)(+Xy) (2.14)

if and only if (I + P.XP,) is invertible for each t ¢ [-z,T]l. Furthermore, W

= (I +X )71 - 1 is given by the projection integral

W = - JdEKG(t)

with
G(t) = P (I + Pkp,)"1

The decomposition of (I + K) into the product in (2.14) is called the

Volterra or special (right) factorization of I + K, and we will sometimes '

refer to X_as the causal (anticausal) factor of K. Note that uniqueness of

the factorization implies that X = (X.,.)‘ when K is self-adjoint.

Two results that will be useful in subsequent convergence analysis are

stated as corollaries below.

Corollary 2.3. Suppose K ¢ is self-adjoint with
sup 1 (I + PexPy)" 2l Sk
t
Then I + K has the factorization (2.14) and W_ = (I + X+)-1-I satisfy
Iv, lgs £ xIKlgs-

Corollary 2.4. Let K; ¢ 4 = 1,2 be self-adjoint with

sup 1(X +P.k;P )72 £ xy.
t

11




Let '; = (I + X;)'l ~ I where 1; denotes

the aﬁticansai factor of ‘i- Then

l'; - '.2|Hs i min ky le - !zlns {1+ kj llens]
i#j

Proof. Let Gj(t) = Py(I + PK;P,) "1, Then

|'; - ';lns < ldexl(Gl - Gy)lgg + lde(Kl - K3)G lgg

[

|11|ns |K1 - Kz'ns ky ky + 'Kl - Kz'ns 3]

k2|x1 - lens {1+ lelns Kyl
Symmetry of the argument with respect to K; and Ky gives the result.//

.Returning nov to the control solution im (2.11), it can be shown that

the Riemann sums
E:E(mi) (1 + P, T‘TPt ]-1Pt ™™
i i i

converge to the projection integral
de(I + 35113

where X is the causal factor of T'T, i.e.
I+TT=(I+3%1+1X).

Now given an element h & Lo([-r,T],0) it is further possible (see [23])) to

attach meaning to the expression

-de(I + X%)"11%, (2.15)

12




as a8 limit of sums

n
2 Elo; (1 +x97I1%,
1=1

where the sequence of simple functions
by = 2 X(wg o) (¢)hy 4

converges im Ly([~r,T),U) to h. The expression (2.15) is precisely 2 when
A

h(t) is chosen via the principle of optimality, h(t) = Pt[TPtu + f] (cf

(2.11)).

Now we proceed to define the feedback solutiom to (2.1) - (2.2). This
follows from a verification of hypotheses and the evaluation of (2.15), with kh
chosen above. Complete details can be found in [24].

Define the Hilbert space H'l = L, ([-£,T], RN,- p) as the space of
i - square integrable functions on [~r,T] with values in BN, It is evident
that the map Q: By — H defined by (Qx)(t) = Q(t) z(t) is bounded and that
¥ has the representation F = F*Q where F* is the adjoint of F considered as
a mapping in B(U.ﬂp). Hence, F*F = F*QF 2> 0. In [24] it is verified that
FPF is Hilbert—-Schmidt, so that Theorem 2.2 implies that (I + F#F) has the

factorization
I+FF=(+310+1X) (2.16)
with X causal.

Now let W* = (I +3X°)"1 - I, Since W*®is Hilbert-Schmidt it has a
matrix kernel W_(t,s). Next define the M x N matrix valued function P(t,a) on
[-2,T] x [-r,T] by



T
P(t,a) = fx(t. 3)!(‘oa)dﬂ(3)a a 2_ t

(2.17)
a
_ where
s
K(t,s) =F'(s,t)Q(s) +/l_(t.c) F'(s,0)Q(s)do (2.18)
t

and Y(t,s) defined as in (2.7). The function P(t,a) provides the feedback

solution to the regulator problem, This is made precise in the followinmg,

Theorem 2.5. The optimal feedback control for (2.1) - (2.2) is given by

min (T, t+r) t
alt) = <P(t,t) 2(t)- f P(t,a) / dg n(a,p-a) ;(B)da
t t-r
T
-/P(t.a) (BPta)(a)da
t

where ; denotes the optimal trajectory, and for eack t, Pt denotes the
projection on U, (Ptu)(s) = x[~z,tl(s)u(s).

integrable (Lebesgue
[-rl T] [ ]

Furthermore, P(t,a) is square

measure) on both the diagonal and the square [-r,T] x

3. CONVERGENCE RESULTS. The specific optimization problem we shall be
considering is the following:

14




min J(u,x) = <x(T), @, x(T)>+ | <x(s), Q(s) x(s)> + Ju(s)|2ds
u,x =r (3.1)

subject to the constraint

0

z(t) = /dg n(t,8) x(t +8) + (BP,yu)(t) t2o (3.2)
=r

x(t) =d(t) t ¢ [-2,0], (3.3)

where é(°) ¢ C([-z,0], BN) and

k t
(Bu)(t) = E x[ri-r.T](t)Bi(t)n(t—ri)+ f B(t,8)u(6)de6. (3.4)
i=0 t-r

The assumptions on n(°,*) are the same as in the preceding section. We

shall assume that 0 = r > -ry > ... ) -1y = -r and utlp IB;(¢)] = b; <= su
t,
IB(t,8)| =b ( . In the cost (3.1) we impose continunity on Q(s).

Interpreting these assumptions in the context of Section 2, we
have p = A + & where A denotes Lebesgue measure, 6§ is the Dirac measure with

support on (T}, and Q(°) is uniformly continuous on [-r,T) with QT) = Q.

Now consider the following sequence [Jn] of approximations to the cost
J(u,x):

T
Jplu,x) = f(x(s). Q(s) x(s) > dp,(s) " (3.5)
' -

) T
+ f lu(s)|24ds,
-r

15



wvhere p jg o sequence of positive regular Borel measures such that:

Hl. p, (T} =1 for all m,

H2. Given ¢ > O there exists m such that n .Z m implies
|un[n.b) - |b-all ¢ & for all 2 ¢ b, a,b ¢ [-2,T].

In this section we will discuss the convergence properties of the
solutions and feedback lavs corresponding to the cost approximations above,
Henceforth we refer to the optimization problem with cost (3.1) as problem @,
and the problem with cost (3.5) as problem & . Unless otherwise noted,

subscripts appearing on operators, functions, etc. (e.g. Fﬁ) will indicate

that these terms are associated with problem F,
We begin with the following simple result.

Lemma 3.1. Let p be defined as above and let M, satisfy Hl and H2. Then
By = 8 —> A (Lebesgue measure) in the v© topology of c*(-z, 7. ’

Proof. Choose ¢ > 0 and 1let fe C(-r,T). Let n = {ti]}‘o be a partition
of [-r,T] such that for It — sl < Inl, 1£(t) - £(s)| < s. Then,

T n-1
| ff d(l.ln -§8) - Z f(ti)lln [ti'ti"'l)l 4 cun[‘t.'r]:
-r i=0

and

T -1
| /f ds =D £(t)(tye - t) < e(T+n).
- i=0

16




By H2, sup lllj [-2,T)l =% ¢ = Now choose m such thatm' > m implies

'll‘o[lob) - Ja-bll < e/nlfl. Then it follows that
n-1
| Z £0ty) {uge [ty,t341) - (tj41 -t} C e,
i=0
Hencse,
[ fd(u'--b)-./;'ds|<c+2ke.

And the lemma is proved.//

Since by defimition F(t,s) = [P B*Y'(t,*)]"(s)
from (3.4) it follows

k
F(t,s) = 2 £, (t,s)
i=0
where
fo(t,s) = Y(t,8)B,(s) + f Y(t,0)B(0,s)de,
s
and

fi(tl.) = Y(t.’+ri)3i(’+ri)l i'lp‘.oko

(c£(2.5)-(2.6)),

(3.6)

Now let y = sup [Y(t,s)l. Then using [12, p.149] and the bounds in (3.4)

we have

sup 1£,(t,8)] £ y(by + br), sup I£,(e, )] < byy.
-t,s t,s

17

(3.7)



Also, for ty > tlz s + 15,

) ,
l£,(tg,8) = fo(t, )] & exp Imly fn(c)da (by + br) (3.8)
| J

+ b?(tz - tl)o

and
t2
t1

°
It is not difficult to show (see [24]) that F¥ = F*j , FX = F®j, where F
is the B-space adjoint of F, i.e. F®: X* — U, and J» jpare the mappings of
.
X into X,

jix)y = ,/;y(s).Q(s) x(s)> dp(s),
jax)y = _/Zy(s). a(s) x(s)> dpy(s).

Now it follows easily from definition and the estimates above that F is
compact. Thus, using the w'- convergence of jax) — J(x) for each x (from
Lemma 3.1), it can then be deduced that Fﬁ —_ F# strongly. Consequeatly from
the compactness of F it also follows that FﬁF —» FAF uniformly. Noting the
form of the open loop control law (in Theorem 2.1), these general
considerations sare enough to demonstrate the Ly, — convergence of the
approximate optimal controls and the uniform convergence of the corresponding

optimal trajectories resulting from approximations based on '?n' However, the
major aim of this section is to produce the stronger L, - convergence of the

approximations for the feedback kernels as well as the controls, and this

requires a somewhat more specific analysis.

Let Z denote the space L ([-r,T],k¥). From the definition of F(t,s) it
is evident that F¥ and Fﬁ are also in B(X,Z). Our first result sharpens the
convergence of Fﬁ —> F# discussed above. This result (and the method of

13




proof) will form the basis for the L, - convergence arguments later.
Lesma 3.2. F — ¥ strongly in B(X,Z).

n

Proof. Let x ¢ X. By definition
k
(P-rlyx: t — Eff;(:.t)q(s)xma(u-un)(.).
i=0
For each i define

£its,t) s >t+ rj
n
£i(t+z5,t) 8 S tery,

Similarly define

Q(s) s ) t+r,
Q;(s,t) =
Q(t+r;) s £ try,
and
| x(s) s ) ttr
xj(s,t) =
x(t+r;) s Stiry.

Considered as families of functions parameterized by t, {gib,t)} is
equicontinuous by virtue of (3.7)-(3.9), and {Q;(-,t)} and {x;(°,t)]} are
equicontinuous by virtse of the uniform continuity of Q(¢) and x(°),
respectively. Furthermore these families are clearly uniformly bounded.

Bence the set

S = {xt CC([-tQT],Ru): xt(‘) = fi(‘nt)Qi(‘.t)xi('pt)lt ‘[-ru'r.rilv i=0.1....k]

19



is relatively compact in C([-z,T1,R¥). Now note that

‘ k
[ ¥ - Fﬁ] (x) ()l £ Z{l f £5(s,£)Q;(s,t)x; (s, t)d(p-py) ()]
i=0 [-r,T]

N
+ | f £,(s,t)Q;(s, t)xy(s, t)d(p—py) (s)]}
['r,t"‘ri]

Using the compactness of S it follows from Lemma 3.1 that the first
integral above converges to zero uniformly with respect to t. And since the
second integral has constant integrand for each t and i, uniform convergence

is obtained here by using H2.//

Now 1let H(t,s) and B (t,s) denote the kermels of F#F and FgF respectively.
Fubinis theorem implies

1B(t,s) - Hn(t.s)l = IZ ff;(c.t)Q(o')fj(c,s)d(u-pn)(c)|. (3.10)
i,

Arguing as in the previous lemma we can show that H, (t,s) converges

uniformly to H(t,s). To see this note that for each fixed i and j

f f;(a.t)Q(a)fj(a,s)d(ll"lln)(a) s+r;
f;(a,t)Q(a)fj(a,s)d(u-—un) (¢) = [""fj"r] '
fi(a.t)Q(c)fj (0,3)d(p-py) (o) s+1y

[t+tilT]

Thus on the set V= {(s,t): 3 + T _)_ t + ri] we can write

Jtery,

<t+ri.

ff;(c.t)Q(c)fj (o,8)d(p~py) (o) = f ?i(c.s.t)Qj(a.s)?j (o,8)d(p-py) (o)

[-r.'l']

", ~
- f £i(c.5,t)Q(a,8)f; (0, 8)d(u~py) (o)

[~z, s+:j]
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"
Vhere Qj(o,s) and £ (c,8) are defined as in Lemma 3.2 and

f;(c.t) o _>, s+1y
Vo .
filo,s,t) =

f'i(rl-tj.t) o ¢ strj,

Uniform convergence of the integrals parameterized by V follows in the
manner of the proof of the lemma. Since this argument also holds for
subsets of the form {(s,t): s +r5; Ct + rj}, we obtain the following
fesult.

Lemma 3.3. VWith the notations above, B, (t,s) — H(t,s) uniformly on
[-2.T] x [-r,T]. In particular, FﬁF —> F*F in the Hilbert-Schmidt topology

(in B(U)) and in the B(Z) topology.

To obtain L, ~ convergence of the feedback kernels we will unse a result

asnalogous to the one above regarding the convergence of the kernels of the
Volterra factors of (I + Fi!-'). Already we can use Corollary 2.4 and Lemma

3.3 to obtain Hilbert-Schmidt convergence of the factors (hence, Ly ~
convergence of their kernels). But our ultimate interest is to demonstrate
B 2237 Ly — vvnvergence ui ilo hciucis. we shail meod the followiug two

results which are of some interest in their own right.

Proposition 3.4. Let K be an integral operator on U with essentially

bounded kernel K(t,s), esssup [K(t,s)| =B < », Swppose that
t,s

snpl(I+Ptrpt)-1| =g (e
. .
so that (I + X) has the factorization

I+K=(I+X*)(I+23X) (3.12)

with X causal (cf Theorem 2.2). Then W = (I.+ X)"1 = I and ¥* are integral
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operators with kernels l+(t.s) satisfying the bound

esssup IV (t.0)] ¢ pla.p) | (3.13)
»S -

vhere.
pla,B) = Bl1 + B(T + r)(1 + aB(T + £))2],

Proof. First note that Corollary 2.3 implies W = (I + X)"1 - Y is Hilbert-
Schmidt with IWlgg ¢ alklgg, Now the factorizationm (3.12) implies

(I+3X%) =(I+K) (T+W.

Substracting the identity from the above and applying the projection p_ (i.e.

taking anticausal parts) results in for © Z t,
T
e

where X_(t,0) and V¥ ,(t,0) are the kernels of X* and ¥ respectively.

Hence for a.e. t,9,

T
Ix_(t,0) < pl1+ /lv+(a.e)ldu].
-T

Consequently,
T T
/lx_(t.O)lde £ g2 fu + fl'...(c.e)lda] 249
- -z -z
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T T ‘ T T
= B2((T + ) + z// I, (c,0)ldcae + /ﬁl+(c.6)|da 240
-T - =T -

-z
$P2T + 01+ In,igg)?
ip2T+n(1+a |Ilns)2
SP2(T+ o) [1+aB(T + 012 a.e. t.
Let o = B2(T + r) [1 + aB(T + £)12, Then since W* satisfies the
identity ¥ = -x°* - 1°v®, we have

A

) T
Iv_ct.o)l <1 x (t,0)] + flx__(t.o) Y_(0.,8)ldo s.e. t,0.
-r

Hence,
T T T T
fl'_(t.o)lzdﬂ iﬁx_(uo)l%e + zflx_(t.e)l flx_(t.s)l I¥_(s,0)]dsde
-z -z -T -z
T T
+f[/lx_(m)l |‘_(8.6)'ds}2d6
- =TI
$d+2d W_lgg + a IW_13g
i a'( 1+ clllns)z a.e. t
Thus,
T
esssup /ll_(t.@)lzdﬁ $B2(T+ 1) [ 1+ ap(T+ )14, (3.14)
t
-z

Now (3.12) slso implies

I+X=(I+V¥')(+K).
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Subtracting the identity and applying p_ yields
v* + 1 +[¥k]= 0.
Hence,
T

Iv_(t,0)] L Ix(t,0)] + flw_(t.s)llx(s.e)lds.

-z

~

T

{1 + (T + £)1/2 o4 sup [/l'_(t.s)lzds]”z}
t

I A

The result follows from 3.14.//

As the result above may be regarded as the L, analogue of Corollary 2.3,

the next proposition is the L, analogne of Corollary 2.4. The notations X, W,
X, (t,s) and W, (t,s) will have the same meaning below as in the preceding

proposition.
Proposition 3.5. Let K be as in the proposition above and let {K;} denote

s sequence of integral operators on U with essentially bounded kernels Kn(t.s)
such that

ess sup |Kn(t.l)| i&.
t,s

and

lim ess sup Iln(t.s) - K(t,s)| =0
n t,s
Assume further that K, _>_ 0 for each n so that I + K, has the factorization

I+ =(1+ X;) (I +X3) (with X, cans;l).

Let Wy(t,s) denote the kermel of the integral operator (I + Xn)-l - L
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Then

lim ess sup |V _(t,s) - W, (t,5)] = 0.
n t,s

Proof. First write I + Ky = I + K + (K, — K) so that
I+K = (I+X )+ A)(X+X,) (3.15)

where A, = (I + X‘)'I(Kn -X) (X +X)71. By Proposition 3.4 es% ;np
Ivt (t.t)'i a for some @ ( ®., Now since I + K, has the factorization: s0
does I + A, Specifically, I+ A,=(I+ Y;) (I + Y,) where I+ 7Y,
(I + X)X + W). It then follows from the identity

I+ PeAgPy = (I + P YoP) (X + Py Y Py)
that

sup I+ P AP,) -1 i snp la + P, Y. P,) -1|2
£ a Iv,1)2 supl (1 + PVP,) 112
11+ X lgg12lexp(1/2(1 + IKIEg 12

Here we have used Corollary 2.3 to obtain the first term in the product,
and the fact that W is Hilbert-Schmidt and quasinilpotent together with [7 ,p.
1039] and Corollary 2.3 to obtain the second term. Now define Z, =
(1 + Yn)-l = I and let Z_(t,s) denote its kernel. Then since

es: sup IA (t.s)l Bpll + a(T + 1) + cz('r + r)zl
S

where B, = ess sup |K(t,s) - !n(t.:)l and a >_ ess sup IW (t,s)1l,
t,s t,s

Proposition 3.4 implies

ess san(t, (a,,
t,s 0 Lot ”'
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with

3 2

By = Byll + a(T + 1) + a2(T+ 1)?]
and

n

@y = [1+ IK,lggl2lexp(1/2(1 + IKI§g)I2.
Finally, note that

Vo= VW+2Zy + Wy,

so that

ess sup IV (t,8) - W (t,9)] £ p(:n.an)ll + (T + r)al.
t,s

N L]
But p(an.ﬂn) = 0(By). This completes the proof.//

Before proceeding to the main result of the section we will make a

digression to establish L, convergence of the approximate control sequence and
trajectories. Again we let Z denote the space L,([-r,‘r],x"). For notational

convenience we also introduce the subspace X,C X of initial conditions,
X, = {x ¢ X: x(t) =x(0) for t 2 0)

and endow it with the subspace topology.

Theorem 3.6. Let 33 denote the unit ball in C ([-r,0]1,BN). For é ¢ 1et
A
Q,(d) and u(é) denote the optimal controls for problems F, and & respectively.

A
Also let x_(d) and %(d) denote the corresponding trajectories. Then,

uniformly on 3,

(1) 1im log(é) - ad)lg = 0,
(11) 1im lz,(é) - 2y = 0.
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Proof. Let é ¢ B. Theorem 2.1 gives the optimal control law as
3,(é) = -1 + PR IFE (1 - )14
where : ¢ X, is the extension of ¢ such that 7(t) = ¢(0) for t?_ 0.

Now (I - L)"I;‘ is recognized as the solution to the homogeneous problem

x(t) = /"e n(t,0)x(t + O)

with initial condition é. Denoting this solution x(d), standard arguments
(see [12]) give

Ix(6) ()] £ lélexp Inl4 (3.16)
and
ty
Ix(é) (tg) = z(d) (e £ 14l [fll(s)ds] explmly. (3.17)
t1

Thus the set S,

S = {x ¢ C([0,T), BN): x(t) = [(X - L)"141(t) for 6 ¢ X, with ld] < 1)

is relatively compact in C([0,T],RN). Now, the triangle inequality yields

lo, - iz £ 11 + FER)geq - HFE - Fh(X - L)’lzlz (3.18)
+ 1+ M1 - a+FRgg - IFa - L4,

Let & 2 ess sup ﬁn(t.s) for all n (¢f (3.10) and Lemma 3.3),
t,s .
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Also let Wy = (I + 1,)'1 - I where X, is the causal factor of FfF- i.e.
(X + FAE) = (14X + X
Thus, )
- .
(I+F8p)~1 = (1 + W) + VD).

Now let"n(t.s) denote the kermel of W,. Then Proposition 3.4 implies ess sup

l'n(t,s)l € p(1,8) independently of n. Hence, ©,8
1@ + ¥Ry tg gy 01+ p(1,8)(T + D12, (3.19)
and consequently
| (1+FEp)~1- (1+F#F) "L g 2y <) (1+FEF) Ll g (4) IFF (F-FFF g 2y | (T+F¥F) " (2
C11+ p01, &)@ + N4IFEF - FFFIg 4, T G20
We also have from (3.16),
IFF (1 - 171 81, < 16l IF¥lg5.2) * exp Imly (3.21)

By Lemma 3.2, Fﬁ —» F# strongly in B(X, Z). Recall now that F(t.s)r (the
kernel of F) vanishes for s ( O. Then since S is relatively compact, it
follows that (F% - F¥)(1- L)™1 —» 0 wniformly in B(X,.Z). This result and

Lemma 3.3 together with (3.19) - (3.21 ) inserted into (3.18).proves the first
assertion of the theoren.

To prove the second part let y, () = x (¢) - X(6). Then y,(é) satisfies
(3.2) with zero initial condition and forcing term B(an"/l\l). Therefore for some
constant C,

1y, (6 (0] < € oss sup lag (é) () - a(é)(e)].
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Thus (ii) follows from (i).//

Next we present the convergence properties of the sequence of

npproxin’a ting feedback kermels.

Theorem 3.7. Let Pn(t.a) and P(t,a) denote the feedback kernels of
Theorem 2.5 associated with problems ¥, and & respectively. Then,

(1) lim ess sup Ip al(tst) — P(t,t)| =0,
(ii) lin oss sup |P (t,a) - P(t,a)| = 0.

Proof. From (217) - (2.18) we write

k T
P, (t,a) = Z'/-Kn'i(t.s)Y(s.a)dun(s).
i=0 a
'k T
P(t,a) = Z K,(t,5)¥(s,a)du(s),
i=0 a
where
"'ri
Kn'i(t.s) = f;(s.t)Q(s) +/ 'n(t.G)f'i(s.e)Q(s)de.
: t
and
'-ri
Ii(t.s) = f;(s.t)Q(s) +/ '(t.e)f;(s.O)Q(s)dO.
t

29



Thus,

k T .
IPn(t.a) - pt.a)l £ E {l /[Kn.i(t.s) - K;(t,3)]¥(s,a)dp  (s) ]+
i=0 a
T
I /xi(t.s)Y(s.a)d(u - ) ()} (3.22)
a
Now,
s-T.

1
X, s(t.9) = Ki(e, 0] £ Iv (t.0) - w(e,0)] l£;(s,0 1lacs) a0

Lemma 3.3 and Proposition 3.5 imply that

lim ess sup ¥ _(t,0) - w(t,0)| = 0.
n t. o

pd

And since Ifi(s.e)l and |Q(s)| are uniformly bounded, routine arguments yield
a measurable set 0 C [-r,T] whose complement has zero Lebesgue measure such
that

Ky, i(t.s) — K;(t,s) uniformly on @ x [-£,TI.

Using the uniform boundedness of Y(s,a) and the sequence of measures p,
it follows that the first integral in (3.22)

tends to zero uniformly on 0 x
[-1,T]. To prove convergence of the second integral in (3.22) we argue as in
Lemma 3.2. Define the family of functions parameterized by a and B,
(Y(:,a,p)},

Y(s,a) s2p
;(s.a.ﬂ) =

Y(B,e) s ¢ B,

30




and the family of functions parameterized by t and v, {;i(t.'r.’)],
Ki(t,s) s 2y
Ei(t.r.:) =
Ki(t,y) s <7

It is straightforward to verify using the properties of K;(t,s) and Y(s,a)
that the set

{Ei(t.p.');('.a.p): p = max {a,t+r;}}

is relatively compact in C ([-r,T], RMxN), Thos the argument in Lemma 3.2

applies here to demonstrate that

T
lim ess sup |f‘i(t,s)Y(:.u)d(un-u)(s)l =0,
n t,a

a

And the theorem is proved.//

4, APPLICATIONS, In this section wve begin by deriving the optimal feedback

kernel associated with an arbitrary discrete state cost penalty., It will be

evident that given the fundamental matrix Y(t,s), the feedback kermel in this
case can be derived by gquadrature and matrix inversion. .This feedback
structure when combined with the results of the preceding section leads to
approximations to the optimal feedback kernel of problem & (recall (3.1)-
(33)), a VWiener—BHopf characterization of this kermel, and a priori bounds onm

its magnitude,
Let v denote a positive discrete measure on [-r,T] of the form
n-1

j;‘dv- £(sy) + Z 8;f(s;); sjel-r,T], 85 = T.
i=0
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Inserting this measure into (2.2) results in the cost

n-1 T

Ju,x) =<x(T), UM x(T) >+ L a <x(si). Q(si) x (si)> +f lu(s)lzds (4 31)
i=0 T -

The optimal feedback kernel for this cost has the following semi sepu-able1

structure.
Theorem 4.1. Define the matrix functions G(t) amd Y(t),

6(t) = WagF'(sg,t):——— Vag 1F'(sp1,t): F'(sp:t)]’

Y(t) = [Va X' (sq,t)i-——VagaY' (s-1,8) X' (55, 8)]°.

Also define the matrix -
-Q(so)

Q(s,)

ond -l

Then the optimal feedback kernel P(t,a) for the problem with dynamics (2.1)

and cost (4.1) can be expressed as

P(t,a) = G’ (t)a(I + U(t))~1¥(a) (4.2)
where
T
U(t) = /G(s)G'(s)‘ads. (4.3)
t
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Proof. It is straightforvard to verify that the map F#F resulting from

the measure Vv in (4.1) is an integral operator with separable kernel
'G'(t)@G(s). Now Theorem 2.5 implies

P(tna) = E ‘ix(to‘i)Y('ioa)o
>

'i 2L a
Here
T
‘(t"i) = F'(s;,t)Q(s;) + /'_(t.c)F'(ti.C)Q(si)do’
t

and VW_(t,o) denotes the kermel of the anticausal operator ¥* in the

factorization
(I+FF) = i1+mE+7).
Using the fact that F'F has a separable kernel, it can be verified
[11,p.188] that
Y_(t,0) = -G’ (£)Q[I + U(¢)11G(q)

with U(t) defined as in (4.3)., Thus ve can write

P(t,a) =) (Va;F(sy,)Q(sy) - 6 (£)QLI + U(t)1™2

T
* fG(C)\/;iF'(Si.O)Q(ti)dc]\/—l_iY(tinc)
t

Noting the definitions of G, Y and U, it follows
P(t,0) = 1G'(t)Q - G’ (¢)QLI + U(t))~1U(¢)1¥(a)
= G'(t)QX + V()1 11 (a).//

Note that if in (4.1) we take for i #n, a; = 0, and let the operator B
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denote a multiplication operator, i.e. (Bu)(t) = B(t)u(t), then (4.2) reduces
Manitius’ result for terminal state penalty [20]

T
P(t,a) = B'OY (T, QT [1+ [ Y(T,O’)B(O’)B'(O’)Y'(T.O)Q(T)do‘]_IY(T.Q).
t

Thus Theorem 4.1 can be viewed as an extension of this result to problems

with control delays and arbitrary discrete state penalty.

Now let Hp be a sequence of discrete positive measures satisfying H1 and
H2, and let P (t,a) denote the corresponding feedback kernels. The theorem
implies each P, (t,a) has the semiseparable form (4.2), while Theorem 3.7
implies the L, convergence of P,y(t,a) to P(t,a)(the optimal feedback kernel
for problem &) and also the L, convergence of P,(t,t) to P(t,t). Introducing
subscripts in the obvious way, define for each n,

Vo) = [1+ 0 ()17l -1
so that the jidentity
= - -1
Va(t) T (¢)[I + Tgy(t)]
holds. Multiplying by G,(t)Qy we obtain
GA()QV, () = ~GL(t)QU, () [T + Uy(¢)]72

= =G, ()0, [ + U ()17 2y, (¢).

Then using the definition of U,(t) and multiplying by ;n(“) it follows that

T
6. (t)QV, (£)T,(a) = fc;,(:)&,,u + Uy (£)1716,(6) 6} (0) GydoT 4 (a)
. A (4.4)
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From (4.2) and the definition of V (t) we have for a 2 t
Pa(t,a) = GL(t)QuV,(t)Y,(a) = G4(t)Q Y (a).
And substituting (4.4) into the above
T
P .(t,a) = G‘;(t)an;n(a) - fG,'l(t)an[I + Un(t)]'1Gn(c)G{l(c)ando§n(a)
t (4.5)
Now let P, denote the integral operator with kernel P (t,a). Ve then
recognize G‘;(t)a'n[l + Un(t)]'lGn(c). with o 2 t, as the kernel of the operator

{P,B]_. Also G,;(t)anfn(c) is recognized as the kernel of FﬁY, vhere Y is the
operator in B(H,X) defined

t
Yo: ¢t —*'/‘Y(t.s)u(s)ds. (4.6)
o

Thus (4.5) represents the Wiener-Hopf equation
P, = (FAY)_ - [(P,B)_FAYI_.

Let P denote the operator with kernel P(t,a). Then since
ln Ip, - Plgs = 0 aad 1im IFfY - Ffylgg = 0

(where the latter is essentially Lemma 3.3), by continuity of the prciection
p_ on the space of Hilbert-Schmidt maps we obtain

P = (Ffy)_ - [(PB)_F#Y]_ (4.1
We formalize this discussion in'the following.

Corollary 4.2. The Wiener-Hopf equation (4.7) has a unique Hilbert-
Schmidt solution P. A version of the kernmel of P is the optimal feedback
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kernel for the optimization problem & (3.1) ~ (3.2). Furthermore this version

of the kernel cam be approximated in the L, topology on the diagonal as well

as the square by the semiseparable kermels P (t,a).
Proof. Ve only need to prove the uniqueness assertion. Suppose there

exist two Hilbert—Schmidt solutions of (4.7) and let 8§ denote their
difference. Then we obtain

8 + [(8B)_FFYl_= 0
Clearly it is sufficient to show that (8B)_ = 0. Define
& = -[(B)_F#y)
s0 that 3;,- 5. Then since B is causal it follows that (gh)_ = (5B)_ and
T + (8B)_FfY = 0.
Multiplying by B and noting that YB = F (cf (3.6) and (4.6))
@B)_ + [(3B)_FFFI_ = 0.
We will show that zero is the only solution to the equation
X + [XFfF]_= 0, (4.8)
thus proving (8B)_ = 0, and the result. Now (4.8) is equivalent to
[x(1 + ¥F))_=o0

with X anticausal, Since F¥F > 0, there exists a causal Hilbert-Schmidt map V
such that

I +FFE=(1+V%(1+V).
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Thus X solves (4.8) if and only if Z solves
z+ [ZVv]_= 0. (4.9)

(These solutions are relatedbdby X = Z(I + v')'l.) Next consider the

mapping £ on the space of Hilbert-Schmidt operators
Z(z) = [ZV]_.
Then (4.9) is equivalent to (I +#)Z =0. Now by induction we find that
¥n(z) = [zv2 ]_,
80 that
lenz)l £ 1zlgglvel.

But V is quasinilpotent, hence so is %. Thus the only solution to (4.9)
is Z=0, and the theorem is proved.//

We note that the existence portion of the corollary was proved in a

different manner in [24].

When B is s multiplication operator, (PB)_ = PB, so that (4.7) becomes

P = (F*Y)_ - [PBFFYI_.

The kernel of F¥Y is easily computed to be of the form B'(t)A(t,s) where

T
A(t,s) = f Y' (o,t)Q(c)Y(0,8)do + Y'(T, t)Q(T)Y(T,s).

max(t,s)

Let A denote the operator with kermel A(t,s) nhd note that FFY = B®A,
Next consider the following modification of the Wiener—Hopf equation (4.7),

M= A_ - MBB*A)_ (4.10)
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Using the same techniques as in the proof of Corollary 4.2 it is possible to
show that (4.10) has a unique Hilbert-Schmidt solution [I,. Also note that the
corollary implies B.Tlo = P, The Wiener-Hopf equition (4.10) is equivalent to
the parameterized family of Fredholm equations Manitius [20] derived via a

maximum principle for obtaining the feedback kermels:

T
t

Corollary 4.2 extends this Wiener-Hopf characterization of the feedback
kernel to problems with coatrol delays, and simultaneously provides

approximate solutions.

The special factorization has been previously exploited in solving
Wiener-Hopf equations on finite intervals of the type (4.10)-(4.11) that arise
in inverse problems in the spectral theory of differential operators [8],[18],
and in the filtering and smoothing problems for nonstationary processes [15],
[16]. The corollary is in a sense a solution finding the right Wiener—Hopf
problemn,

Now we return to the original problem (3.1) - (3.3) and consider a
specific sequence of measures for genmerating approximations to the optimal
feedback kernel.

Let {p,} denote the sequence of measures

n-1

./;d"n = f(T) + (T + r)/n Z f(i(T + £)/n - 1), (4.12)
i=0

This sequence is easily shown to satisfy H1 and H2., Nov suppose the
majorizing function m(t) (cf (2.3)) is bounded and the weighting function Q(*)
has a bounded derivative. Letting P_(t,a) denote the feedback kernel

corresponding to the cost with measure py, it is straightforward (although
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tedious) to derive s constant C from the results in Section 3 such that

ess sup [P(t,a) - P (t,a)] £ C/n,
t,a

(4.13)

ess sup | (P(t,t) - Pn(t.t)l £ c/n.
4

We can slso use the approximations Pn(t.a) to obtain an a priori bound
on [P(t,a)] in the following way.

First observe that for each t
Q1+ 0 (e LQ, n=1,2,...
Thus,
Ip(t,a) ] £ leg(o)llQ lIT ()], n=1,2,...
where all the norms above are operator (matrix) norms on the appropriate
Euclidean spaces. Now for each a.l?n(q)l is bounded by IYn(a)las. (Here
I"BS denotes the Hilbert—-Schmidt matrix norm which is the square root of the
sum of the sqnares of the matrix entries.) And
n—-1
1T () 13g = 17T a) I3s +(T + 02 ¥(sy.a) s
a i=0
<
- (T+z1+ l)slslp |!(s.a)|ﬁs.
A similar bound holds for lga(t) |,

'G;‘(t)lz S(T+ 1+ Dsup lF'(s.t)lﬁs.
s

Thus,

IPt,a)l £ (T+ £+ 1) sup lats)] * sup IF' (s, t)lgg ° sup 1¥(s,a) lgg
s 5
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independently of 2. Aand since P (t,a) — P(t,a) s.e. (on the square and
diagonal), the same bound holds for |P(t,a)l.

The T- dependence (the length of the problem interval) in the bound for
IP(t,a)] can be expressed differently by noting that

T

lim l?n(a)lﬁs = {Y(T,a) |ﬁs + le('-a)lisd'
E

And after using the analogous bound on |G,',(t)| we obtain

T
IP(t,a)] ¢ sup lats)] - (IF(T,t)1§g +f|p'(s.t)l§sas11/2
- s t
T N
* (T, 0) 1 3g +f|!(s.a)lﬁsds}1/2.
a

When the system (3.1) - (3.4) is time—invariant and stable, a bound
independent of T can be established for |P(t,a)l. To see this we take Q(°) =
Q ( a constant matrix) sand n(t,0) = n(0@) where all the roots of the

characteristic equation
o
A(d) = AI - /e"edn(O)

-z

are assumed to have negative real part. Also for simplicity we define the

operator B as

t
(Bu) (t) = Byu(t) "'f B(t-0)u(6)de
t-r
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with |B°|, sup [B(t)] ¢ b, From the assumptions on n(*) it can be shown [12]
that Y(t,a) = Y(t-a) with |Y(t)] £ ¢ exp(-pt) for some c.p Z 0. Thus,

T A [ J
le(s.a)l%sds < le(s)lﬁsds (=,
a o

Since the Laplace transfors Y1) of Y(t) satisfies Y(A) = A~1(X), (see [12]),
the inequality above together with Parseval’s formula yields

T [ )
/I!(s.a)l%s {2 ﬁA’l(ix)I%sdx.

a -
Next note that

nin(s, t+r)

IF' (s,t) lgs A blY(s-t)lgg + f 1Y (s-0) ,nslB(O-t)lnsde
t

S wly(s - t)lgs + G(s,t)

where
=t 1/2
we| [ M@ lgn| |, e $e S e
[+]

G(‘ut) = t+r 1/2
b\/;[ le(s-O)lﬁsde] s > t+r
)
t

Straightforward approximations then yield

T ®
le'(s.t)l?,sds < 2mp2{1 + Vir}? flA"l(n)lﬁsdx.
t -
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Thus, independent of the length of the problem interval,

IPt,a)l 'S lal 20b(1 + V22) f 1472 (12) 13aa.

5. ALGORITHMS. The results that have been presented thus far have emphasized
the connections between factorization and the feedback kernels for hereditary systems
with control delays, and have not focused on any of the implementation issues
concerning the approximation scheme that has been defined. In this Section we will
examine in greater detail algorithms based on Theorem 4.1. Particular attention will be

paid to time-invariant systems. First, a quick remark about these algorithms in general.

We note that it has already been observed that combining (4.2) with the

discretizations (4.12) results in (most cases) an 0(1/n) Lwconvergence of the feedback

kemel.sz. This result, which is also valid for time varying systems with control delays,
is sharper than the approximations for the feedback operators obtained in [10], [19].
Neither of these articles establishes a priori rates of convergence, nor do the
convergence results that are established translate into Loo convergence of the kernels.
The underlying reason why we are able to obtain the stronger convergence is that we do
not approximate the entire semigroup (or evolution operator), but only that piece that is
contributed by the fundamental matrix (which we must solve for as a separate
computation). In the general time-varying case with discrete state cost at the nodes

{sn}ni_l. this amounts to solving the n+l Volterra equations

s,
i
Y(si.a) =I-7 Y(si.u)'n(u,o-u) du (5.1

g

In the time-invariant case these computations reduce to the single Volterra equation

1
Y(@) = I- J Y(um(u-t)du. (5.2)

0
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Once we havé the solutions (5.1) or (5.2), the feedback structure (4.2) is straightforward
and can be computed from quadrature, matrix inversion and multiplication.

Of course we are not constrained to directly solving (5.1) or (5.2), and we can use
other methods for obtaining the fundamental solution - e.g. state approximation
methods [2], [3]), the method of steps [26], [27] or other available methods for solving
Volterra functional differential equations [28], [29], [30]. Having said this, we assume
throughout this section that the functions Y(t,s) and F(1,s) have been computed. (A

couple of issues associated with these computations will be addressed later.)

One straightforward implementation of (4.2) consists in defining the grid {si}?_o
s0 that 5-5, = A = T/n, taking a = A, and replacing the integral in (4.3) by a first
order Buler quadrature with nodes {si}. To see where this leads us, first write P(1,a) in

the more symmetrical fashion
~1 —t el
P(ta) = G'®Q [T + J405) It T,

where
T
~1 ~1
U = Q7 [G(s) G's)dsQ "
t

A
Let U(si) denote the approximation to g(si).

A ~ ~1l
Ots) = T a%Y 606" 103 g
j2i

A
and form the approximations {P(si.sj)li >ito [P(si.sj)} 21
A ~ld A —y A=
P(s.,s.) = G'(s,)Q "u + Us))'Q "3(s.) (5.3)
i’ i 1 )
Now note that

A - A ~4 ~V
[+ Uts_ W™ =114 Uts)+ AQ /'G(si)G'(si)Q A

i-1
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and that
Rank (A??'/ 'G(si)G'(si)al./') sM

(Recall that M = dimension of the input space.) Thus, using the matrix identity,
(X+ YY) =X - XY (exT'y 4+ DX

A —
for compatible matrices X and Y, it follows that (I + U(si_l)) ' can be updated from

A -
1« U(si)) ! in about 2MN’n? operations. Purther, exploiting the semiseparable

A
structure of P(*,*), a rough operation count shows that {P(si.si)}i > can be computed

in approximately 3MN*n’ operations when M S N << n.

Considering that there are more than MNn?/2 values in the matrices
A
{P(si'sj)}i 2 this algorithm is fairly efficient. However, we will subsequently show
that it is possible to do substantially better in the time-invariant case. (We will also

provide a more complete analysis in this case.)

Por the remainder of this section we consider the problem defined by the dynamics

0 ) 4 t
i(t) = [dnO®) x(140) + ¥ Bi u(t.-ri) + J B(1-©)u(©)d6, 120 (5.4)
™ 5 {20 t-r
x(t) = P(1), tel-r0]
ut) = 0, t ¢ [-r,0]
and cost
T
Jax) = [ <x(s), Qx()> + [u(s)}? ds (5.5)
0

The assumptions here are the same as in (3.1) - (3.4), except now everything is
time-invariant. (Previously the lower limit in the integral defining the cost ] was taken
a8 -r. This served as a notational expediency in the preceding sections, which we
dispense with in the present section.)
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We will explicitly consider the discretizations of J,

n-1 T
Jo= L A<x(s) Qxis)>+ I has)? ds, (5.6)

i=0 0

where {si}:.o is a regular partition of the interval [0,T] with mesh A = $.1° 5% " T/n.

(Although the mesh points of the partition change with n, we will not double subscript
the 5. This will not lead to any confusion in the sequel.) We will also assume that the

point delays in the control, T i=1,...k, correspond to some subset of the {si}. i=0,...n.

Again we let Pn (,+) denote the optimal feedback kernel for cost In and let

P(<,+) denote the optimal feedback kernel for cost ]J. In the time-invariant case Var
|n(<)| and Q(+) are constant, so that (4.13) holds for the sequence {Pn(-.-)}. The

particular algorithm which we will be developing is based on approximately Pn (eye) at
the mesh points {si}; thus it is first necessary to prove that (4.13) actually holds
everywhere. Before showing this we need some notations and a couple of simple
observations.

Por any matrix M, as before IMIHS denotes the Hilbert-Schmidt norm of M (the
square root of the sum of the squares of its entries), and for specificity we write IMI2

for the operator norm of M with respect to the corresponding Euclidean metrics. Note
that IMIHs 2 |M|2-

The fundamental matrix solution Y(t,a) to (5.4) (cf (2.7)) has the form Y(1,a) =
Y(t-a). We set

Yy = 5P IY(t)IHs. (5.0
te[0,1]

and using [12, p. 149] we note that

1Y@ - Y(S)IHS = O (|t-s]), t,5 €]0,T) ., (5.8)

Similarly PB(t,s) (cf (8.6)) is a difference kernel, B(t,s) = B(1-3), and using (5.7) and (5.8)
we have

sup lF(t)IHs =Yg < oo, (5.9
teilo,t]

and |
|B(t) - P(s)lﬁs = O (jt-3]), when t, sc'(ri. T, l) for some i, 0 S i Sk-1 (5.10)

Lemma 5.1. Let P(1,a) denote the optimal feedback kernel for the problem (5.4) -
(5.5). Then
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PGt &) - _P(t.‘.a')l = O (Jt-t'] + |a-a']).
Proof. From Theorem 2.5 we have

T
P(t,a) = | K(1,5)Y(s-a) ds,

a

where

s
K(t,s) = F'(s-0) Q + [ W_(1,0)F'(s—0)Qdo

t

Since sup |K(t,s)] <= (cf Proposition 3.4 and (5.9)), it follows from (5.8) that
1,8
|Pt,@) - P(L,a’)f < K1|a.-a.'|

for some constant K1 independent of